η^1 -C₆H₅CH₂Li · THF · TMEDA, Kristallstruktur eines Benzyllithium · THF · TMEDA-Komplexes mit einem pyramidalen Benzyl-C-Atom

Wolfgang Zarges, Michael Marsch, Klaus Harms und Gernot Boche*

Fachbereich Chemie der Philipps-Universität, Hans-Meerwein-Straße, D-3550 Marburg

Eingegangen am 17. Mai 1989

Key Words: Benzyllithium / Pyramidal carbon atom

Nach der Röntgenstrukturanalyse von [C6H3CH2Li · N(CH2-CH₂)₃N]_∞ durch Patterman, Karle und Stucky³⁷⁾ sowie der von [C6H5CH2Li · OEt2] durch Beno, Hope, Olmstead und Power⁴² präsentieren wir eine weitere Benzyllithium-Strukturuntersuchung, nämlich die von η^{i} -C₆H₅CH₂Li · THF · TMEDA (1). Im Gegensatz zu den früheren liegt bei 1 eine monomere Benzyllithium-Verbindung vor. Außerdem ist Lithium lediglich an das benzylische C-Atom koordiniert, dessen pyramidale Konfiguration erstmals ermittelt werden konnte. Die Molekulargewichtsbestimmung von C₆H₅CH₂Li in THF, die ein Monomer ergab⁶¹, und Kernresonanzuntersuchungen in THF, die auf ein pyramidales, benzylisches C-Atom bei 1 (und C6H3CH2Li 53,54) hinweisen, entsprechen der Festkörperstruktur von 1. Die in den drei Festkörperstrukturen beobachteten verschiedenen Koordinationen des Lithium-Kations an das Benzyl-Anion sind wie die pyramidale Konfiguration des benzylischen C-Atoms in 1 mit quantenmechanischen Rechnungen (auch anderer Autoren⁴⁵⁻⁵⁰) in Einklang. Die pyramidale Konfiguration des benzylischen C-Atoms in 1 läßt vermuten, daß ähnliche stereochemische Verhältnisse zur hohen Retention beitragen, die bei der Haller-Bauer-Spaltung optisch aktiver Benzylphenylketone beobachtet wird $^{62e-g)}$.

Da Benzyl-Verbindungen von allgemeiner Bedeutung sind, wundert es nicht, daß auch viele Benzylmetall-Verbindungen hergestellt und im Hinblick auf ihre Struktur untersucht worden sind¹⁻³⁶. Wie sieht es mit Benzyllithium-Verbindungen aus; gibt es *die* Struktur von "Benzyllithium"?

$\eta^1\text{-}C_6H_5CH_2Li\cdot THF\cdot TMEDA,$ Crystal Structure of a Benzyllithium \cdot THF \cdot TMEDA Complex with a Pyramidal Benzylic C Atom

In addition to the X-ray structure determination of [C₆H₃CH₂Li· $N(CH_2CH_2)_3N]_{\infty}$ by Patterman, Karle, and Stucky³⁷ and that of [C₆H₃CH₂Li · OEt₂]_∞ by Beno, Hope, Olmstead, and Power⁴² we present yet another benzyllithium structure: η^1 -C₆H₅CH₂Li. THF \cdot TMEDA (1). In contrast to the earlier ones, a monomer is observed in the case of 1. Furthermore, in 1 lithium is only coordinated to the benzylic carbon atom whose pyramidal configuration has been determined for the first time. The molecularweight determination of $C_6H_5CH_2Li$ in THF giving a monomer⁶¹, and NMR investigations in THF indicating a pyramidal benzylic C atom in 1 (and C₆H₃CH₂Li^{53,54}) correspond to the solid-state structure of 1. The different coordinations of lithium observed in the three solid-state structures and the pyramidal configuration of the benzylic C atom in 1 are in agreement with theoretical studies (also of other authors⁴⁵⁻⁵⁰). The pyramidal configuration of the benzylic C atom of 1 suggests that a similar stereochemical situation contributes to the high retention observed recently in Haller-Bauer cleavage reactions of optically active benzylic ketones^{62e-g)}.

Die erste Röntgenstrukturanalyse einer Benzyllithium-Verbindung, und zwar die von [Benzyllithium · 1,4-Diazabicyclo[2.2.2]octan]_{∞}, wurde von Patterman, Karle und Stucky bereits 1970 veröffentlicht³⁷. Abb. 1 (links) zeigt diese "klassische" Struktur, in der die Bindung des Lithiums als η^3 -artig an das benzylische, das *ipso*- und das *ortho*-C-Atom interpretiert wurde.

Abb. 1. Kristallstruktur von [Benzyllithium \cdot 1,4-Diazabicyclo[2.2.2]octan] $_{\infty}^{37j}$ (links); Kristallstruktur von [Benzyllithium \cdot Diethylether] $_{\infty}^{42j}$ (rechts)

Chem. Ber. 122 (1989) 2303 – 2309 © VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1989 0009 – 2940/89/1212 – 2303 \$ 02.50/0

Eine genauere Betrachtung lehrt jedoch, daß der Abstand des ortho-C-Atoms zu Lithium mit 259 pm außerhalb des üblicherweise einer Li – C-Bindung zugerechneten Abstands von 250 pm liegt^{38–40)}. Nach diesem Kriterium hätte man es also mit einer η^2 -Bindung des Lithiums zum benzylischen (221 pm) und zum *ipso*-C-Atom (239 pm) zu tun. Zumindest jedoch sollte die Bindung des Lithiums an das ortho-C-Atom äußerst schwach sein. Auf die Frage nach der Konfiguration des benzylischen C-Atoms – planar oder pyramidal (tetrahedral) – wurde in dieser Publikation nicht eingegangen, da die H-Atome nicht lokalisiert werden konnten⁴¹⁾.

Welchen Einfluß Liganden am Li-Atom auf die Struktur von Benzyllithium-Verbindungen haben können, wurde mit der 1985 von Beno, Hope, Olmstead und Power publizierten Röntgenstrukturuntersuchung von [Benzyllithium · Diethylether]_∞ erstmals klar⁴², s. Abb. 1 (rechts). Die annähernd symmetrisch oberhalb und unterhalb der Benzyl-Ebene angeordneten Lithium-Atome sind η¹- bzw. η²-artig an das Benzyl-Anion gebunden, wie die in Abb. 1 (rechts; S. 2303) wiedergegebenen Abstände zeigen (in der Elementarzelle findet man vier verschiedene Abstände, die zwischen den angegebenen Grenzwerten liegen). Die Konfiguration des (wahrscheinlich weitgehend planaren) benzylischen C-Atoms wurde auch bei diesem Benzyllithium-Derivat nicht ermittelt.

Damit lassen sich die bisherigen Festkörperstrukturuntersuchungen von Benzyllithum-Verbindungen folgendermaßen zusammenfassen:

1. Einer η^3 -Anordnung scheint keine Präferenz zuzukommen. Wie ein Vergleich von Lit.¹⁻²⁵⁾ (η^1),²⁶⁻²⁸⁾ (η^2) und²⁹⁻³⁶⁾ (η^3) zeigt, ist dies bei anderen Benzylmetall-Verbindungen auch nicht der Fall.

2. Die Konfiguration des benzylischen Kohlenstoff-Atoms in $C_6H_5CH_2Li(-Verbindungen)$ ist unbekannt.

Im folgenden zeigen wir, daß die Röntgenstrukturanalyse der Benzyllithium-Verbindung $C_6H_5CH_2Li \cdot TMEDA \cdot THF$ (1) eine weitere Art der Bindung von Lithium an das Benzyl-Anion zeigt, nämlich eine η^1 -artige an das benzylische C-Atom, und daß das benzylische C-Atom pyramidal konfiguriert ist. Modellrechnungen ("Gasphase") und NMR-Untersuchungen in Lösung sind mit den Festkörperuntersuchungen in Einklang.

Kristallstruktur von $C_6H_5CH_2Li \cdot TMEDA \cdot THF$ (1)

Die Kristallstruktur von 1 ist in Abb. 2 wiedergegeben, Tab. 1 enthält die wichtigsten Bindungslängen, -winkel und Torsionswinkel.

Den Abständen Li1-C1 [221.0(5) pm], Li1-C2 [272.2(5) pm], Li1-C3 [336.6(6) pm] und Li1-C7 [348.6(6) pm] kann man entnehmen, daß Lithium weder zu den *ortho*-C-Atomen C3 und C7 noch zum *ipso*-C-Atom C2 eine bindende Beziehung eingeht. Nur der Abstand zum benzylischen C1 entspricht einer Li-C-Bindung, Lithium ist hier also η^1 -artig an das Benzyl-Anion gebunden. Damit unterscheiden sich alle der bislang bekannt gewordenen Kristallstrukturen von C₆H₅CH₂Li-Verbindungen in Bezug auf die Koordination des Lithium-Kations an das Benzyl-Anion.

Von der Benzyllithium-Struktur kann also keine Rede sein, vielmehr hängt diese auf vergleichsweise sensible Art von den Komplexliganden am Lithium ab⁴³⁾. Die Abbiegung der H-Atome an C1 aus der Ebene des Phenyl-Ringes weg vom Lithium zeigen die Torsionswinkel $C3 - C2 - C1 - H11 = -15(2)^{\circ}$ und $C7 - C2 - C1 - H12 = 17(2)^{\circ}$ an. Bei tetraedrischer Konfiguration des benzylischen C-Atoms würde die Summe der Beträge dieser Torsionswinkel 60° ausmachen. Aus der bei 1 gefundenen Summe von 32° folgt, daß eine deutlich abgeflachte pyramidale Konfiguration vorliegt, die auch noch eine günstige Stabilisierung der negativen Ladung durch den Phenyl-Ring zuläßt.

Abb. 2. Kristallstruktur von $C_6H_5CH_2Li \cdot TMEDA \cdot THF$ (1)

Tab. 1. Bindungslängen [pm], Bindungswinkel [°] und Torsionswinkel [°] in 1

C1-C2	142.0(4)	Lil-Cl	221.0(5)	C3-C2-C1-Li	84.2(3)
C2-C7	142.2(4)	Li1-C2	272.2(5)	C3-C2-C1-H11	-15(2)
C7-C6	137.0(5)	Li1-C3	336.6(6)	C7-C2-C1-H12	17(2)
C6-C5	140.2(5)	Li1-C7	348.6(6)	C2-C1-Li	94.6(2)
C5-C4	137.8(5)	Li1-01	197.3(5)	Cl-Li-Nl	113.8(2)
C4-C3	137.9(4)	Li1-N1	216.2(5)	C1-L1-N2	116.3(2)
C3-C2	141.5(4)	Li-N2	213.4(5)	C1-Li-0	117.0(2)

Berechnungen zur Benzyllithium-Struktur

Daß die Koordination des Lithium-Kations an das Benzyl-Anion entscheidend von den Solvensmolekülen am Lithium abhängt, und daß das benzylische C-Atom in diesen Verbindungen pyramidal ist, zeigen verschiedene quantenmechanische Untersuchungen zur Struktur von Benzyllithium-Verbindungen. Tab. 2 gibt die MNDO-Bildungsenthalpien ΔH_f [kcal/mol] des Benzyl-Anions (2, 3), von Benzyllithium (4-6) und solvatisierten C₆H₅CH₂Li-Verbindungen (7-14) wieder. Details zur Struktur von 2-14 sind als Anhang wiedergegeben. Tab. 2. MNDO-Strukturen und Bildungsenthalpien ΔH_f [kcal/mol] (EDA = Ethylendiamin)

Beim Benzyl-Anion selbst ist das planare 2 merklich stabiler als 3 mit den abgebogenen H-Atomen, was auf die reduzierte Stabilisierung der negativen Ladung durch den Phenyl-Ring in 3 zurückzuführen ist. Im Falle von C₆H₅-CH₂Li ist ein Teil der Stabilität des η^6 -koordinierten (4) bzw. des η^3 -koordinierten Isomers 5 auf die Überbewertung der Li-C-Bindung im MNDO-Verfahren zurückzuführen⁴⁴, doch bevorzugt das nicht solvatisierte Lithium zweifellos eine höhere als die η^1 -Koordination (6). Auch mit zwei Donormolekülen am Lithium ist das η^3 -C₆H₅CH₂Li · 2NH₃ (7) gegenüber dem η^1 -Isomer 8 begünstigt. Mit drei Solvensmolekülen (10-13) oder je einem mono- und bidentaten Liganden am Lithium (14) ist stets die η^1 -Koordination bevorzugt.

Daß die Energieunterschiede zwischen η^1 - und η^3 -Koordination jedoch gering sind, lehrt ein Vergleich der MNDO-

Abb. 3. MNDO-Bildungsenthalpien ΔH_f [kcal/mol] von 14 und 15

Chem. Ber. 122 (1989) 2303-2309

Bildungsenthalpien ΔH_f von η^1 -C₆H₅CH₂Li · H₂O · EDA (14) und $[\eta^3$ -C₆H₅CH₂Li · EDA + H₂O] (15), s. Abb. 3.

Der nicht sehr wesentliche Unterschied von $\Delta\Delta H_f = 3.9$ kcal/mol könnte bedeuten, daß die Entropie das Gleichgewicht $14 \rightleftharpoons 15$ merklich mitbestimmt.

Unsere MNDO-Strukturuntersuchungen sind in bester Übereinstimmung mit früheren von Lipkowitz et al.⁴⁵⁾. Diese Autoren untersuchten u. a. das Benzyl-Anion, Benzyllithium und ein mit einem H₂O-Molekül bzw. zwei und drei H₂O-Molekülen solvatisiertes Benzyllithium: Nur das Benzyl-Anion besitzt ein planares benzylisches C-Atom; mit dem dritten H₂O-Molekül am Lithium ist die η^1 -Koordination bevorzugt. STO-3G-Berechnungen an (substituierten) Benzyl-Anionen stammen von van Beylen et al.⁴⁶⁾. Es wundert nicht, daß die planaren Anionen stabiler sind als diejenigen mit pyramidalem Benzyl-C-Atom. In einer weiteren Arbeit derselben Autoren⁴⁷⁾ wurde u. a. auch die STO-3G-Struktur von C₆H₅CH₂Li berechnet, wobei wie im MNDO-Verfahren (s. o.) die η^3 - stabiler als die η^1 -Koordination ist. Eine grö-Bere Stabilität von 4 gegenüber 5 hatten auch Sygula und Rabideau (MNDO) gefunden⁴⁸⁾. Bushby berechnete die Struktur von C₆H₃CH₂Li mit Hilfe eines einfachen elektrostatischen Modells⁴⁹⁾. Auf den geringen, mit IGLO berechneten Energieunterschied zwischen η^3 - und η^2 -koordiniertem Benzyllithium (+0.1 kcal/mol) wiesen jüngst Schleyer et al. hin⁵⁰⁾ - in guter Übereinstimmung mit dem oben bei 14 und 15 berichteten Ergebnis.

Daß die Wechselwirkung des (solvatisierten) Lithium-Kations mit dem Benzyl-Anion in allen Fällen zu einer Pyramidalisierung des benzylischen C-Atoms führt, wobei die H-Atome von Lithium weggebogen sind – wie bei 1 gefunden –, sei abschließend erwähnt⁵¹).

¹³C-NMR-Untersuchungen und Molekulargewichtsbestimmung in THF-Lösung

Die Kopplungskonstante ${}^{1}J({}^{13}C^{1}H)$ ist eine Sonde für die Konfiguration des benzylischen Kohlenstoff-Atoms in Benzylmetall-Verbindungen: Bei tetraedrischer Konfiguration sollte sie bei ca. 125 Hz und bei planarer bei ca. 170 Hz liegen ⁵².

In C₆H₅CH₂Li · THF · TMEDA (1) findet man eine ¹J(¹³C¹H)-Kopplungskonstante für das benzylische C-Atom von 131 Hz ([D₈]THF, 25 °C). Frühere Untersuchungen (C₆H₅CH₂Li, THF, Cyclohexan, 25 °C, 134 Hz⁵³⁾; C₆H₅CH₂Li, THF, -30 °C, 134 Hz⁵⁴) ergaben geringfügig größere Werte. Somit gibt es keinen Zweifel, daß auch in THF-Lösung Benzyllithium bzw. 1 ein pyramidales benzylisches C-Atom aufweisen, so daß die diesbezüglichen Ergebnisse im Festkörper, in Lösung und von Berechnungen zumindest qualitativ zum gleichen Ergebnis führen⁵⁵.

Die Tatsache, daß die Molekulargewichtsbestimmung von $C_6H_3CH_2Li$ in Tetrahydrofuran ein Monomer ergeben hat⁶¹⁾, ist aus zwei Gründen von Bedeutung: sie stimmt erstens mit dem (wegen TMEDA allerdings nur bedingt vergleichbaren) Befund der Röntgenstrukturanalyse von 1 überein und rechtfertigt zweitens die Verwendung von Monomer-Modellen in den MNDO-Berechnungen.

Haller-Bauer-Spaltung von optisch aktiven Benzylketonen – chirale Benzyllithium-Verbindungen in der Synthese

Die Haller-Bauer-Spaltung von Benzylketonen Ph- $CR^{1}R^{2}-C(O)-Ph$ ist seit langem als Methode zur Umwandlung dieser Verbindungen in Ph- $CR^{1}R^{2}H$ und Ph- $CONH_{2}$ bekannt⁶²⁾. In neueren Arbeiten von Paquette et al.^{62e-g)} wurde die Umsetzung von optisch aktiven Ketonen im Hinblick auf die Retention in Aryl- $CR^{1}R^{2}H$ untersucht. So wurde z. B. bei der Reaktion des optisch aktiven (+)-16 mit LiNH₂ in Benzol die entsprechende H-Verbindung (+)-17 mit 80proz. Retention der Konfiguration erhalten^{62g)}.

Die Beobachtung dieser und noch ausgeprägterer Retentionen verlangen zwar nicht notwendigerweise chirale Benzyllithium-Verbindungen, die pyramidal (tetrahedral) sind^{62e-g)}, etwa wie 1 oder die in Lit.⁵⁵⁾ erwähnten substituierten Benzyllithium-Verbindungen. Andererseits ist auf Grund des in der vorliegenden Arbeit Berichteten zu erwarten, daß die chiralen Benzyllithium-Zwischenstufen der Haller-Bauer-Reaktion ebenfalls pyramidal sind, und daß diese Pyramidalisierung zum Ausmaß der Retention bei der Protonierung beiträgt.

Der Deutschen Forschungsgemeinschaft (Schwerpunktprogramm "Nichtkovalente Wechselwirkungen" und Sonderforschungsbereich 260) sowie dem Fonds der Chemischen Industrie danken wir für die Unterstützung dieser Arbeiten. W. Z. bedankt sich für ein Graduierten-Stipendium.

Experimenteller Teil

 $[C_oH_3CH_2Li \cdot TMEDA \cdot THF]$ (1): Zu einer Lösung von 200 mg (1.7 mmol) TMEDA in 1.0 ml Toluol, 1.0 ml Et₂O und 0.5 ml THF gab man bei 0°C 1.0 ml *n*-Butyllithium in Hexan (1.65 M). Kristalle bildeten sich beim Stehenlassen bei 6°C. Zur Aufnahme der NMR-Spektren wurden die Kristalle von der Mutterlauge befreit, mit *n*-Hexan gewaschen und anschließend kurz i. Vak. getrocknet. – ¹H-NMR ([D₈]THF, Raumtemp.): $\delta = 6.36$ (2H, H_m), 6.12 (2H, H_o), 5.46 (1H, H_p), 1.61 (2H, H_a). – ¹³C-NMR ([D₈]THF, Raumtemp.): $\delta = 161.2$ (C_i), 128.4 (C_m), 116.9 (C_o), 104.7 (C_p), 37.1 (C_a, ¹J_{CH} = 131 Hz).

MNDO-Rechnungen: Für die MNDO-Rechnungen wurden Standard-Parameter⁶³⁾ und -Programme⁶⁴⁾ verwendet. Die Geometrien wurden durch Minimierung der Gesamtenergie mit dem Davidon-Fletcher-Powell-Algorithmus⁶⁵⁾ erhalten.

Kristallstrukturanalyse von 1: Ein Kristall der Größe $1.2 \times 0.5 \times 0.3$ mm wurde für die Aufnahme der Reflexintensitäten benutzt. Summenformel C₁₇H₃₁LiON₂, Molmasse: 286.39; F(000) = 632; monoklin, Raumgruppe $P_{2_1/n}$, Int. Tab. Nr. 14. Gitterkonstanten a = 868.2(2), b = 1538.7(1), c = 1393.4(3) pm, $\beta = 103.30(1)^\circ, V = 1811.5(6)$ Å³, ermittelt nach Zentrierung von 25 Reflexen im Bereich $\Theta = 30-45^{\circ}, Z = 4, D(ber.) = 1.050 \text{ gcm}^{-3}, \mu(Cu-K_{\alpha}) =$ 4.6 cm⁻¹, Messung mit einem CAD-4-Diffraktometer (Enraf-Nonius, Graphit-Monochromator, Cu- K_{α} , $\lambda = 154.184$ pm), MeBtemp. $-120 \pm 5^{\circ}$ C, Meßbereich 2.0° < Θ < 55°, h(0/9), k(-16/16), l(-14/14), ω -Scan, Scanbreite (0.8 + 0.35 tg Θ)° ±25% vor und nach jedem Reflex zur Untergrundbestimmung. Kontrollreflexe: alle 3600 s je 3 Reflexe auf Zersetzung, alle 250 Reflexe je 3 auf Orientierung. Nach Lp-Korrektur und Mittelung verblieben von 4842 gemessenen Reflexen 2223, von denen 2127 mit $F_o > 5\sigma(F_o)$ als beobachtet angesehen wurden. Strukturlösung mit den Direkten Methoden in SHELXS 86⁶⁶⁾, Verfeinerung mit der "full-matrixleast-squares"-Methode⁶⁷, alle Nichtwasserstoff-Atome anisotrop, Wasserstoff-Atome isotrop mit gemeinsamen Temperaturfaktoren, die von TMEDA und THF auf berechneten Lagen, Extinktionsparameter: $1.37(5) \cdot 10^{-6}$, 214 Parameter. R = 0.063. $R_w = 0.070$. Minimiert wurde der Ausdruck $\sum w(|F_o| - |F_c|)^2$, Gewichtung: w = $1/\sigma^2(F_o)$. Shift/error < 0.001 im letzten Verfeinerungszyklus, maximale Restelektronendichte 0.41 e/Å³. Empirische Korrektur der Daten mit dem Programm DIFABS⁶⁸⁾. Alle Berechnungen wurden mit einer MicroVAX II durchgeführt⁶⁹⁻⁷¹).

Tab. 3. Atomkoordinaten und äquivalente Temperaturfaktoren U_{eq} [Å²] für 1; $U_{eq} = 1/3 \Sigma_{ij} (U_{ij} \cdot \mathbf{a}_i^* \cdot \mathbf{a}_j^* \cdot \mathbf{a}_i)$

Atomx/ay/bz/c U_{eq} 010.5338(2)0.2994(1)0.3345(1)0.0360(7)N10.6180(3)0.5133(1)0.3329(2)0.0325(8)N20.8426(3)0.3933(1)0.2688(2)0.0333(8)C10.8403(4)0.3767(2)0.5326(2)0.041(1)C20.8485(3)0.2844(2)0.4999(2)0.042(1)C30.9658(4)0.2378(2)0.4999(2)0.042(1)C40.9660(4)0.1484(2)0.4999(2)0.042(1)C50.8518(4)0.0992(2)0.5217(2)0.051(1)C60.7364(4)0.1424(2)0.5595(2)0.049(1)C70.7353(4)0.2313(2)0.2656(2)0.039(1)C90.7602(3)0.4645(2)0.2070(2)0.046(1)C110.6329(4)0.5745(2)0.2070(2)0.046(1)C120.8453(4)0.3155(2)0.2070(2)0.047(1)C150.4252(3)0.2118(2)0.3055(2)0.037(1)C160.3782(4)0.3484(3)0.061(1)C170.3304(4)0.2184(2)0.3716(3)0.032(1)H1.059(3)0.120(2)0.472(2)0.051(4)H31.049(4)0.272(2)0.4712(2)0.051(4)H31.049(4)0.278(2)0.512(2)0.051(4)H31.049(4)0.278(2)0.512(2)0.051(4)H41.059(3)0.120(2)0.472(2)0.051(4)H50.849(3)0.042(2)0.512(2)0.051(
OI 0.5338(2) 0.2994(1) 0.3345(1) 0.0360(7) N1 0.6180(3) 0.5133(1) 0.3329(2) 0.0325(8) N2 0.8426(3) 0.5133(1) 0.2688(2) 0.033(8) C1 0.8403(4) 0.3767(2) 0.5326(2) 0.041(1) C2 0.8485(3) 0.2844(2) 0.4539(2) 0.042(1) C4 0.9660(4) 0.1484(2) 0.4599(2) 0.042(1) C5 0.8518(4) 0.0992(2) 0.5217(2) 0.042(1) C6 0.7364(4) 0.2313(2) 0.5652(2) 0.042(1) C7 0.7353(4) 0.2315(2) 0.2758(2) 0.046(1) C10 0.4541(3) 0.5135(2) 0.2758(2) 0.046(1) C11 0.6329(4) 0.5745(2) 0.4150(2) 0.046(1) C12 0.8451(4) 0.3165(2) 0.377(1) 0.066(2) L11 0.7058(5) 0.318(2) 0.3136(2) 0.0448(1) C15 0.4252(3) 0.1572(2) 0.3254(3) 0.048(1)	Atom	x/a	у/Ъ	z/c	^U eq
N1 0.6180(3) 0.5133(1) 0.3329(2) 0.0325(8) N2 0.8426(3) 0.3933(1) 0.2688(2) 0.0333(8) C1 0.8403(4) 0.3767(2) 0.5526(2) 0.041(1) C2 0.8485(3) 0.22844(2) 0.5339(2) 0.042(1) C3 0.9658(4) 0.2378(2) 0.4929(2) 0.042(1) C4 0.9660(4) 0.1484(2) 0.4929(2) 0.047(1) C5 0.8518(4) 0.0992(2) 0.5217(2) 0.040(1) C6 0.7364(4) 0.1424(2) 0.5652(2) 0.042(1) C7 0.7353(4) 0.2313(2) 0.5652(2) 0.040(1) C10 0.4641(3) 0.5135(2) 0.2758(2) 0.046(1) C11 0.6451(3) 0.5135(2) 0.275(2) 0.046(1) C12 0.8453(4) 0.3165(2) 0.2070(2) 0.047(1) C13 1.0069(3) 0.4183(2) 0.3136(2) 0.046(1) C11 0.572(3) 0.118(2) 0.3776(3) 0.032(1) <	01	0.5338(2)	0.2994(1)	0.3345(1)	0.0360(7)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Nl	0.6180(3)	0.5133(1)	0.3329(2)	0.0325(8)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N2	0.8426(3)	0.3933(1)	0.2688(2)	0.0333(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1	0.8403(4)	0.3767(2)	0.5326(2)	0.041(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2	0.8485(3)	0.2844(2)	0.5339(2)	0.035(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3	0.9658(4)	0.2378(2)	0.4999(2)	0.042(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4	0.9660(4)	0.1484(2)	0.4929(2)	0.047(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5	0.8518(4)	0.0992(2)	0.5217(2)	0.051(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6	0.7364(4)	0.1424(2)	0.5595(2)	0.049(1)
C8 0.7246(3) 0.5396(2) 0.2696(2) 0.039(1) C9 0.7602(3) 0.4645(2) 0.2070(2) 0.040(1) C10 0.4541(3) 0.5135(2) 0.2758(2) 0.046(1) C11 0.6329(4) 0.5745(2) 0.4150(2) 0.046(1) C12 0.8453(4) 0.3165(2) 0.2758(2) 0.043(1) C13 1.0069(3) 0.4183(2) 0.3336(2) 0.043(1) C14 0.5605(3) 0.2118(2) 0.3055(2) 0.037(1) C15 0.4252(3) 0.1572(2) 0.3254(3) 0.048(1) C16 0.376(3) 0.032(1) 0.066(2) L11 0.7058(5) 0.3846(3) 0.3776(3) 0.032(1) H 1.059(3) 0.120(2) 0.477(2) 0.051(4) * H3 1.049(4) 0.272(2) 0.479(2) 0.051(4) * H4 0.652(3) 0.111(2) 0.581(2) 0.051(4) * H7 0.659(4) 0.258(2) 0.591(2) 0.062(2)	C7	0.7353(4)	0.2313(2)	0.5652(2)	0.042(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8	0.7246(3)	0.5396(2)	0.2696(2)	0.039(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9	0.7602(3)	0.4645(2)	0.2070(2)	0.040(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10	0.4541(3)	0.5135(2)	0.2758(2)	0.046(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11	0.6329(4)	0.5745(2)	0.4150(2)	0.046(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12	0.8453(4)	0.3165(2)	0.2070(2)	0.047(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C13	1.0069(3)	0.4183(2)	0.3136(2)	0.043(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C14	0.5605(3)	0.2118(2)	0.3055(2)	0.037(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C15	0.4252(3)	0.1572(2)	0.3254(3)	0.048(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C16	0.3782(4)	0.3048(2)	0.3484(3)	0.061(1)
LI1 0.7058(5) 0.3846(3) 0.3776(3) 0.032(1) H 1.059(3) 0.120(2) 0.472(2) 0.051(4) $*$ H3 1.049(4) 0.272(2) 0.479(2) 0.051(4) $*$ H5 0.849(3) 0.042(2) 0.516(2) 0.051(4) $*$ H6 0.652(3) 0.111(2) 0.581(2) 0.051(4) $*$ H7 0.659(4) 0.258(2) 0.591(2) 0.051(4) $*$ H11 0.932(4) 0.409(2) 0.522(2) 0.051(4) $*$ H12 0.775(4) 0.404(2) 0.570(2) 0.052(2) $*$ H81 0.8221(3) 0.5601(2) 0.3107(2) 0.062(2) $*$ H91 0.6624(3) 0.4429(2) 0.1672(2) 0.062(2) $*$ H91 0.6624(3) 0.4429(2) 0.1672(2) 0.062(2) $*$ H102 0.8259(3) 0.4452(2) 0.1651(2) 0.062(2) $*$ H102 0.3855(3) 0.4961(2) 0.3174(2) 0.062(2) $*$ H103 0.4261(3) 0.5708(2) 0.2208(2) 0.062(2) $*$ H110 0.6424(3) 0.5708(2) 0.2508(2) 0.062(2) $*$ H111 0.7403(4) 0.5708(2) 0.2508(2) 0.062(2) $*$ H112 0.6044(4) 0.6317(2) 0.3896(2) 0.062(2) $*$ H122 0.9001(4) 0.3301(2) 0.1564(2) 0.062(2) $*$ H123 0.8987(4) 0.2698(2) 0.2469(2) 0.062(2) $*$ H133 1.0610(3) 0.4715(2) 0.3450(2) 0.062(2) $*$ H131 0.0563(4) 0.35708(2) 0.2469(2) 0.062(2) $*$ H132 1.0596(3) 0.3712(2) 0.3530(2) 0.062(2) $*$ H133 1.0610(3) 0.4315(2) 0.2626(2) 0.062(2) $*$ H142 0.5608(3) 0.2100(2) 0.3436(2) 0.062(2) $*$ H151 0.3620(3) 0.1344(2) 0.2649(3) 0.062(2) $*$ H152 0.4651(3) 0.1102(2) 0.3694(3) 0.062(2) $*$ H152 0.4651(3) 0.1344(2) 0.2699(3) 0.062(2) $*$ H152 0.4651(3) 0.1302(2) 0.3694(3) 0.062(2) $*$ H152 0.4651(3) 0.1102(2) 0.3694(3) 0.062(2) $*$ H152 0.4651(3) 0.1302(2) 0.4691(3) 0.062(2) $*$ H162 0.3753(4) 0.2099(2) 0.4420(3) 0.062(2) $*$ H174 0.2193(4) 0.2099(2) 0.4	C17	0.3304(4)	0.2184(2)	0.3719(3)	0.066(2)
H $1.059(3)$ $0.120(2)$ $0.472(2)$ $0.051(4)$ *H3 $1.049(4)$ $0.272(2)$ $0.479(2)$ $0.051(4)$ H5 $0.849(3)$ $0.042(2)$ $0.479(2)$ $0.051(4)$ H6 $0.652(3)$ $0.111(2)$ $0.581(2)$ $0.051(4)$ H7 $0.659(4)$ $0.258(2)$ $0.591(2)$ $0.051(4)$ H11 $0.932(4)$ $0.409(2)$ $0.552(2)$ $0.051(4)$ H12 $0.775(4)$ $0.409(2)$ $0.522(2)$ $0.051(4)$ H81 $0.8221(3)$ $0.5601(2)$ $0.3107(2)$ $0.062(2)$ H81 $0.8221(3)$ $0.4429(2)$ $0.1672(2)$ $0.062(2)$ H91 $0.6624(3)$ $0.4429(2)$ $0.1672(2)$ $0.062(2)$ H01 $0.4623(3)$ $0.4735(2)$ $0.22508(2)$ $0.062(2)$ H102 $0.3855(3)$ $0.4961(2)$ $0.3174(2)$ $0.062(2)$ H103 $0.4261(3)$ $0.5748(2)$ $0.2508(2)$ $0.062(2)$ H114 $0.7634)$ $0.5748(2)$ $0.4563(2)$ $0.062(2)$ H113 $0.5639(4)$ $0.5570(2)$ $0.4563(2)$ $0.062(2)$ H121 $0.703(4)$ $0.5570(2)$ $0.3544(2)$ $0.062(2)$ H122 $0.9001(4)$ $0.3301(2)$ $0.1564(2)$ $0.062(2)$ H131 $1.0073(3)$ $0.4686(2)$ $0.3540(2)$ $0.062(2)$ H131 $1.0610(3)$ $0.4315(2)$ $0.2267(2)$ $0.662(2)$ H131 $1.0610(3)$ $0.4315(2)$ $0.2267(2)$ $0.662(2)$ H131 $1.0610(3)$ 0.431	LII	0.7058(5)	0.3846(3)	0.3776(3)	0.032(1)
H3 $1.049(4)$ $0.272(2)$ $0.479(2)$ $0.051(4)$ H5 $0.849(3)$ $0.042(2)$ $0.516(2)$ $0.051(4)$ H6 $0.652(3)$ $0.111(2)$ $0.551(2)$ $0.051(4)$ H7 $0.659(4)$ $0.258(2)$ $0.591(2)$ $0.051(4)$ H11 $0.922(4)$ $0.409(2)$ $0.522(2)$ $0.051(4)$ H12 $0.775(4)$ $0.404(2)$ $0.570(2)$ $0.051(4)$ H81 $0.8221(3)$ $0.560(2)$ $0.2268(2)$ $0.062(2)$ H82 $0.6754(3)$ $0.5856(2)$ $0.2268(2)$ $0.062(2)$ H91 $0.6624(3)$ $0.4429(2)$ $0.1672(2)$ $0.062(2)$ H02 $0.8259(3)$ $0.4852(2)$ $0.1651(2)$ $0.062(2)$ H101 $0.4423(3)$ $0.4735(2)$ $0.2288(2)$ $0.062(2)$ H103 $0.4261(3)$ $0.5708(2)$ $0.2508(2)$ $0.062(2)$ H111 $0.7403(4)$ $0.5774(2)$ $0.4853(2)$ $0.062(2)$ H113 $0.5639(4)$ $0.5570(2)$ $0.4853(2)$ $0.062(2)$ H113 $0.5639(4)$ $0.2570(2)$ $0.4563(2)$ $0.062(2)$ H121 $0.7387(4)$ $0.2993(2)$ $0.1771(2)$ $0.062(2)$ H123 $0.8987(4)$ $0.2698(2)$ $0.2469(2)$ $0.062(2)$ H131 $1.0073(3)$ $0.468(2)$ $0.2469(2)$ $0.062(2)$ H131 $1.0610(3)$ $0.4315(2)$ $0.2626(2)$ $0.662(2)$ H141 $0.6599(3)$ $0.1906(2)$ $0.3436(2)$ $0.662(2)$ H141 $0.6599(3)$ $0.1906(2)$	н	1.059(3)	0.120(2)	0.472(2)	0.051(4) *
H5 $0.849(3)$ $0.042(2)$ $0.516(2)$ $0.051(4)$ \bullet H6 $0.652(3)$ $0.111(2)$ $0.581(2)$ $0.051(4)$ $*$ H7 $0.659(4)$ $0.258(2)$ $0.591(2)$ $0.051(4)$ $*$ H11 $0.932(4)$ $0.409(2)$ $0.522(2)$ $0.051(4)$ $*$ H12 $0.775(4)$ $0.404(2)$ $0.570(2)$ $0.051(4)$ $*$ H81 $0.822(3)$ $0.5601(2)$ $0.370(2)$ $0.062(2)$ $*$ H81 $0.8221(3)$ $0.5601(2)$ $0.107(2)$ $0.062(2)$ $*$ H91 $0.6624(3)$ $0.4429(2)$ $0.1672(2)$ $0.062(2)$ $*$ H91 $0.6624(3)$ $0.4429(2)$ $0.1672(2)$ $0.062(2)$ $*$ H102 $0.3855(3)$ $0.4961(2)$ $0.3174(2)$ $0.062(2)$ $*$ H102 $0.3855(3)$ $0.4961(2)$ $0.3174(2)$ $0.062(2)$ $*$ H112 $0.6044(4)$ $0.5708(2)$ $0.2508(2)$ $0.062(2)$ $*$ H113 $0.5639(4)$ $0.5570(2)$ $0.4529(2)$ $0.062(2)$ $*$ H122 $0.9001(4)$ $0.3301(2)$ $0.1564(2)$ $0.062(2)$ $*$ H123 $0.8987(4)$ $0.2698(2)$ $0.2469(2)$ $0.062(2)$ $*$ H131 $1.0073(3)$ $0.4686(2)$ $0.3544(2)$ $0.062(2)$ $*$ H132 $1.0596(3)$ $0.3712(2)$ $0.3530(2)$ $0.062(2)$ $*$ H133 $1.0610(3)$ $0.4315(2)$ $0.2264(2)$ $0.062(2)$ $*$ H142 $0.5608(3)$ <	нз	1.049(4)	0.272(2)	0.479(2)	0.051(4) •
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Н5	0.849(3)	0.042(2)	0.516(2)	0.051(4) •
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H6	0.652(3)	0.111(2)	0.581(2)	0.051(4) *
H11 $0.932(4)$ $0.409(2)$ $0.522(2)$ $0.051(4)$ *H12 $0.775(4)$ $0.404(2)$ $0.570(2)$ $0.051(4)$ *H81 $0.822(3)$ $0.5601(2)$ $0.3107(2)$ $0.062(2)$ H82 $0.6754(3)$ $0.5601(2)$ $0.3107(2)$ $0.062(2)$ H82 $0.6754(3)$ $0.5856(2)$ $0.2268(2)$ $0.062(2)$ H91 $0.6624(3)$ $0.4429(2)$ $0.1672(2)$ $0.062(2)$ H91 $0.6624(3)$ $0.4429(2)$ $0.1672(2)$ $0.062(2)$ H101 $0.4433(3)$ $0.4735(2)$ $0.2218(2)$ $0.062(2)$ H102 $0.3855(3)$ $0.4961(2)$ $0.3174(2)$ $0.062(2)$ H103 $0.4261(3)$ $0.5708(2)$ $0.4529(2)$ $0.062(2)$ H112 $0.6044(4)$ $0.6317(2)$ $0.3896(2)$ $0.062(2)$ H112 $0.6044(4)$ $0.5770(2)$ $0.4563(2)$ $0.062(2)$ H112 $0.5639(4)$ $0.2993(2)$ $0.1771(2)$ $0.062(2)$ H121 $0.787(4)$ $0.2993(2)$ $0.1771(2)$ $0.062(2)$ H122 $0.9001(4)$ $0.3301(2)$ $0.1564(2)$ $0.062(2)$ H131 $1.0073(3)$ $0.4686(2)$ $0.3544(2)$ $0.062(2)$ H132 $1.0596(3)$ $0.3712(2)$ $0.3530(2)$ $0.062(2)$ H142 $0.5608(3)$ $0.2100(2)$ $0.2367(2)$ $0.062(2)$ H142 $0.5608(3)$ $0.2100(2)$ $0.364(3)$ $0.062(2)$ H151 $0.362(4)$ $0.3255(2)$ $0.2891(3)$ $0.062(2)$ H152 </td <td>H7</td> <td>0.659(4)</td> <td>0.258(2)</td> <td>0.591(2)</td> <td>0.051(4) *</td>	H7	0.659(4)	0.258(2)	0.591(2)	0.051(4) *
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H11	0.932(4)	0.409(2)	0.522(2)	0.051(4) *
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H12	0.775(4)	0.404(2)	0.570(2)	0.051(4) •
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H81	0.8221(3)	0.5601(2)	0.3107(2)	0.062(2) •
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H82	0.6754(3)	0.5856(2)	0.2268(2)	0.062(2) *
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	H91	0.6624(3)	0.4429(2)	0.1672(2)	0.062(2) *
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H92	0.8259(3)	0.4852(2)	0.1651(2)	0.062(2) *
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H101	0.4433(3)	0.4735(2)	0.2218(2)	0.062(2) •
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H102	0.3855(3)	0.4961(2)	0.3174(2)	0.062(2) *
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	H103	0.4261(3)	0.5708(2)	0.2508(2)	0.062(2) *
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H111	0.7403(4)	0.5748(2)	0.4529(2)	0.062(2) 🔹
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H112	0.6044(4)	0.6317(2)	0.3896(2)	0.062(2) *
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H113	0.5639(4)	0.5570(2)	0.4563(2)	0.062(2) •
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H121	0.7387(4)	0.2993(2)	0.1771(2)	0.062(2) *
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H122	0.9001(4)	0.3301(2)	0.1564(2)	0.062(2) *
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	H123	0.8987(4)	0.2698(2)	0.2469(2)	0.062(2) •
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H131	1.0073(3)	0.4686(2)	0.3544(2)	0.062(2) •
$ \begin{array}{cccccc} H133 & 1.0610(3) & 0.4315(2) & 0.2626(2) & 0.062(2) \\ H141 & 0.6599(3) & 0.1906(2) & 0.3436(2) & 0.062(2) \\ H142 & 0.5608(3) & 0.2100(2) & 0.2367(2) & 0.062(2) \\ H151 & 0.3620(3) & 0.1344(2) & 0.2649(3) & 0.062(2) \\ H152 & 0.4651(3) & 0.1102(2) & 0.3694(3) & 0.062(2) \\ H161 & 0.3082(4) & 0.3255(2) & 0.2891(3) & 0.062(2) \\ H162 & 0.3753(4) & 0.3439(2) & 0.4016(3) & 0.062(2) \\ H171 & 0.2193(4) & 0.2099(2) & 0.3450(3) & 0.062(2) \\ H172 & 0.3634(4) & 0.2099(2) & 0.3450(3) & 0.062(2) \\ \end{array} $	H132	1.0596(3)	0.3712(2)	0.3530(2)	0.062(2) *
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H133	1.0610(3)	0.4315(2)	0.2626(2)	0.062(2) •
$\begin{array}{ccccccc} H142 & 0.5608 (3) & 0.2100 (2) & 0.2367 (2) & 0.062 (2) \\ H151 & 0.3620 (3) & 0.1344 (2) & 0.2649 (3) & 0.062 (2) \\ H152 & 0.4651 (3) & 0.1102 (2) & 0.3694 (3) & 0.062 (2) \\ H161 & 0.3082 (4) & 0.3255 (2) & 0.2891 (3) & 0.062 (2) \\ H162 & 0.3753 (4) & 0.3439 (2) & 0.4016 (3) & 0.062 (2) \\ H171 & 0.2193 (4) & 0.2099 (2) & 0.3450 (3) & 0.062 (2) \\ H172 & 0.3534 (4) & 0.2099 (2) & 0.4420 (3) & 0.062 (2) \\ \end{array}$	H141	0.6599(3)	0.1906(2)	0.3436(2)	0.062(2) •
H151 0.3620(3) 0.1344(2) 0.2649(3) 0.062(2) H152 0.4651(3) 0.1102(2) 0.3694(3) 0.062(2) H161 0.3082(4) 0.3255(2) 0.2891(3) 0.062(2) H162 0.3753(4) 0.3439(2) 0.4016(3) 0.062(2) H171 0.2193(4) 0.2099(2) 0.3450(3) 0.062(2) H172 0.3534(4) 0.2099(2) 0.4420(3) 0.062(2)	H142	0.5608(3)	0.2100(2)	0.2367(2)	0.062(2) •
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H151	0.3620(3)	0.1344(2)	0.2649(3)	0.062(2) •
$\begin{array}{ccccccc} H161 & 0.3082 \left(4\right) & 0.3255 \left(2\right) & 0.2891 \left(3\right) & 0.062 \left(2\right) \\ H162 & 0.3753 \left(4\right) & 0.3439 \left(2\right) & 0.4016 \left(3\right) & 0.062 \left(2\right) \\ H171 & 0.2193 \left(4\right) & 0.2099 \left(2\right) & 0.3450 \left(3\right) & 0.062 \left(2\right) \\ H172 & 0.3534 \left(4\right) & 0.2099 \left(2\right) & 0.4420 \left(3\right) & 0.062 \left(2\right) \\ \end{array}$	H152	0.4651(3)	0.1102(2)	0.3694(3)	0.062(2) *
H162 0.3753(4) 0.3439(2) 0.4016(3) 0.062(2) • H171 0.2193(4) 0.2099(2) 0.3450(3) 0.062(2) • H172 0.3534(4) 0.2099(2) 0.4420(3) 0.062(2) •	H161	0.3082(4)	0.3255(2)	0.2891(3)	0.062(2) *
H171 0.2193(4) 0.2099(2) 0.3450(3) 0.062(2) • H172 0.3534(4) 0.2099(2) 0.4420(3) 0.062(2) •	H162	0.3753(4)	0.3439(2)	0.4016(3)	0.062(2) •
H172 0.3534(4) 0.2099(2) 0.4420(3) 0.062(2) •	H171	0.2193(4)	0.2099(2)	0.3450(3)	0.062(2) •
	H172	0.3534(4)	0.2099(2)	0.4420(3)	0.062(2) 🔹

* Isotrop verfeinert.

Anhang

MNDO-Bindungslängen [pm], -Bindungswinkel [°] und -Torsionswinkel $\lceil \circ \rceil$ in 2–14

2	C1 - C1 - C1 -	C2 H1 H2	137. 108. 108.	2 7 7	H1 H2	-	C1 C1	-	C2 C2	-	C3 C3	0.1 0.0
3	C1 - C1 - C1 -	C2 H1 H2	137. 109. 109.	9 3 3	H1 H1	-	C1 C1	-	C2 C2	-	C3 C3	20.0 160.0
4	C1 - Li -	C2 Pheny	/1-C	136.2 223.8	H1 H2	-	C1 C1	-	C2 C2		C3 C3	0.0 -1.8
5	C1 - Li - Li - Li -	C2 C1 C2 C3	149. 188. 223. 232.	5 9 0 5	H1 H2 Li Li		c1 c1 c1 c1		C2 C2 C2 C2		C7 C7 C7 81.	179.0 56.3 -47.2
6	C1 - Li -	C2 C1	149. 184.	5 1	H1 H2 Li Li		C1 C1 C1 C1		C2 C2 C2 C2		C3 C3 C3	30.0 150.0 -90.0
7	C1 - Li - Li - Li - Li - Li -	C2 C1 C2 C3 N1 N2	147. 198. 228. 243. 222. 223.	1 3 2 4 8 5	H1 H2 Li C1 Li		C1 C1 C1 C2 C1		C2 C2 C2 C3 C2		C3 C3 C3 H3 81.	-178.6 -49.9 49.8 12.6
8	C1 - Li - Li - Li -	C2 C1 N1 N2	148. 191. 222. 222.	5 9 2 1	H1 H2 Li Li	-	C1 C1 C1 C1		C2 C2 C2 C2		C3 C3 C3	30.0 150.0 -90.0
9	Cl - Li - Li - Li - Li - Li -	C2 C1 C2 C3 N1 N2	146. 198. 223. 236. 222. 222.	8 4 7 7 2 8	H1 H2 Li C1 Li		C1 C1 C1 C2 C1	-	C2 C2 C2 C3 C3		C3 C3 C3 H3	177.5 46.6 -50.1 -11.4
10	Cl - Li - Li - Li - Li -	C2 C1 N1 N2 N3	146. 198. 228. 227. 228.	8 5 4 6 0	H1 H2 Li Li		C1 C1 C1 C1		C2 C2 C2 C2		C3 C3 C3	25.9 149.4 -86.2
11	C1 - Li - Li - Li - Li -	C2 C1 N1 N2 O1	146. 197. 227. 226. 224.	9 9 3 4 0	H1 H2 Li Li		C1 C1 C1 C1		C2 C2 C2 C2		C3 C3 C3	28.4 152.1 -90.9
12	C1 - Li - Li - Li - Li -	C2 C1 N1 O1 O2	146. 197. 225. 222. 222.	9 4 0 3 1	H1 H2 Li Li		C1 C1 C1 C1		C2 C2 C2 C2		C3 C3 C3	27.9 152.1 -89.5
13	C1 - Li - Li - Li - Li -	C2 C1 01 02 03	147. 196. 221. 220. 220.	0 9 3 8 6	H1 H2 Li Li	-	C1 C1 C1 C1		C2 C2 C2 C2		C3 C3 C3	27.5 151.6 -88.4
14	C1 - Li - Li - Li - Li -	C2 C1 N1 N2 O1	147. 196. 228. 226. 221.	0 9 2 3 8	H1 H2 Li Li	-	C1 C1 C1 C1		C2 C2 C2 C2		C3 C3 C3 98	24.5 149.3 -86.2

CAS-Registry-Nummern

1: 121845-19-0 / 6: 766-04-1 / C: 7440-44-0 / Toluol: 108-88-3

 η' -Benzylmetallverbindungen:

- ¹⁾ Na: C. Schade, P. v. R. Schleyer, H. Dietrich, W. Mahdi, J. Am. Chem. Soc. 108 (1986) 2484. ²⁾ Mg^{, 2a)} M. F. Lappert, T. R. Martin, C. L. Raston, B. W. Skelton,
- A. H. White, J. Chem. Soc. Dalton 1982, 1959. ^{2b)} B. Schubert, E. Weiss, Chem. Ber. 117 (1984) 366.
- ³⁾ Al: A. F. M. M. Rahman, K. F. Siddiqui, J. P. Oliver, Organometallics 1 (1982) 881.
- metallics 1 (1982) 881.
 ⁴¹ Ti: ⁴³ G. R. Davis, J. A. J. Jarvis, B. T. Kilbourn, J. Chem. Soc., Chem. Commun. 1971, 1511. ^{4b)} I. W. Bassi, G. Allegra, R. Scordamaglia, G. Chioccola, J. Am. Chem. Soc. 93 (1971) 3787. ^{4c]} H. Stöckli-Evans, Helv. Chim. Acta 57 (1974) 684. ^{4d]} D. J. Brauer, H. Bürger, K. Wiegel, J. Organomet. Chem. 150 (1978) 215. ^{4c]} C. Glidewell, D. C. Liles, Acta Crystallogr., Ser. B, 35 (1979) 1689. ⁴⁰ G. S. Bristow, M. F. Lappert, T. R. Martin, J. J. Atwood W. F. Hunter, J. Chem. Soc., Dalton Trans. B, 35 (1979) 1089. — "G. S. Bristow, M. F. Lappert, 1. R. Martin, J. L. Atwood, W. F. Hunter, J. Chem. Soc., Dalton Trans. 1984, 399. — ⁴⁸ M. Mena, M. A. Pellinghelli, P. Royo, R. Ser-rano, A. Tiripicchio, J. Chem. Soc., Chem. Commun. 1986, 1118. — ^{4h} L. R. Chamberlain, L. D. Durfee, P. E. Fanwick, L. Kobriger, S. L. Latesky, A. K. McMullen, I. P. Rothwell, K. Folting, J. C. Huffman, W. E. Streib, R. Wang, J. Am. Chem. Soc. 109 (1987) 390.
- ⁵⁾ V: S. Gambarotta, M. Mazzanti, C. Floriani, A. Chiesa-Villa, C. Guastini, J. Chem. Soc., Chem. Commun. 1985, 829.
- ⁶ Cr: F. A. Cotton, G. N. Mott, *Organometallics* 1 (1982) 302. ⁷⁾ Mn: ^{7a)} L. E. Manzer, L. J. Guggenberger, *J. Organomet. Chem.* **139** (1977) C34. ^{7b)} C. G. Howard, G. Wilkinson, M. Thornton-Pett, M. B. Hursthouse, J. Chem. Soc., Dalton Trans. 1983,
- 2025. ⁸⁾ Fe: ^{8a)} J. P. Blaha, W. S. Wrighton, J. Am. Chem. Soc. 107 (1985) 2694. - ^{8b)} A. R. Hermes, G. S. Girolami, Organometallics 6
- ⁽¹⁹⁸⁷⁾ 763.
 ⁹⁾ Co: ^{9a)} H. H. Hersh, F. J. Hollander, R. G. Bergman, J. Am. Chem. Soc. 105 (1983) 5834. ^{9b)} S. K. Tyrlik, A. T. H. Lenstra, J. F. Soc. 105 (1983) 5834. ^{9b)} S. K. Tyrlik, A. T. H. Lenstra, J. F. J. van Loock, H. J. Geise, R. A. Dommisse, Acta Crystallogr., Ser. C, 42 (1986) 553. – ⁹⁰ V. Galamb, G. Pályi, F. Ungvári, L.
- Marko, R. Boese, G. Schmid, J. Am. Chem. Soc. 108 (1986) 3344. Marko, R. Boese, G. Schmid, J. Am. Chem. Soc. 106 (1960) 5511.
 ¹⁰⁾ Ge: ^{10a)} C. Glidewell, D. C. Liles, J. Organomet. Chem. 174 (1979) 275. - ^{10b)} C. Glidewell, D. C. Liles, Acta Crystallogr., Ser. B, 38 (1982) 1320. - ^{10c)} P. B. Hitchcock, H. A. Jasmin, R. E. Kelly, M. F. Lappert, J. Chem. Soc., Chem. Commun. 1985, 1776.
 ¹¹⁾ A. D. C. Aller, C. L. Boston, P. W. Stellon, A. H. White, S. B.
- ¹¹⁾ As: D. G. Allen, C. L. Raston, B. W. Skelton, A. H. White, S. B.
- ¹¹⁷ As: D. G. Allen, C. L. Raston, B. w. Skenon, A. H. White, S. D. Wild, Aust. J. Chem. 37 (1984) 1171.
 ¹²¹ Zr: ^{12a} G. R. Davis, J. A. J. Jarvis, B. T. Kilbourn, A. J. P. Pioli, J. Chem. Soc., Chem. Commun. 1971, 677. ^{12b} Siehe Lit.⁴⁰. ^{12c} G. Fochi, C. Floriani, A. Chiesa-Villa, C. Guastini, J. Chem. Soc., Dalton Trans. 1986, 445. ^{12d} C. R. Randall, M. E. Silver, J. K. Harris, Lett. Soc. 1987, 128 (1987) 30 J. A. Ibers, Inorg. Chim. Acta 128 (1987) 39.
- J. A. Ibers, Inorg. Chim. Acta 128 (1987) 39.
 ¹³⁾ Nb: ^{13a)} M. F. Lappert, T. R. Martin, C. R. C. Milne, J. L. Atwood, W. F. Hunter, R. E. Pentilla, J. Organomet. Chem. 192 (1980) C35. ^{13b)} P. B. Hitchcock, M. F. Lappert, C. R. C. Milne, J. Chem. Soc., Dalton Trans. 1981, 180. ^{13c)} M. F. Lappert, C. L. Raston, G. L. Rowbottom, A. H. White, J. Chem. Soc., Chem. Commun. 1981, 6. ^{13d)} M. F. Lappert, C. L. Raston, A. H. White, J. Chem. Soc., Chem. Commun. 1981, 485. ^{13e)} L. M. Engelhardt, W. P. Leung, C. L. Raston, A. H. White, J. Chem. Soc., Chem. Soc., Chem. Commun. 1981, 485. ^{13b)} S. I. Bailey, L. M. Engelhardt, W. P. Leung, C. L. Raston, A. H. White, J. Chem. Soc., Dalton Trans. 1985. 1747.
- 1985, 1747.
 ¹⁴⁾ Mo: ^{14a)} M. J. Chetcuti, M. H. Chisholm, K. Folting, J. C. Huffman, J. Janos, J. Am. Chem. Soc. 104 (1982) 4684. ^{14b)} Siehe Lit.⁶⁾. ^{14c)} G. H. Schrauzer, L. A. Hughes, E. O. Schlemper, F. Ross, D. Ross, Organometallics 2 (1983) 1163. ^{14d)} M. J. Chet-Ross, D. Ross, Organometallics 2 (1983) 1163. ^{14d)} M. J. Chet-Ross, D. Ross, Organometallics 2 (1983) 1163. ^{14d)} M. J. Chet-Ross, D. Ross, Organometallics 2 (1983) 1163. ^{14d)} M. J. Chet-Ross, D. Ross, Organometallics 2 (1983) 1163. ^{14d)} M. J. Chet-Ross, D. Ross, Organometallics 2 (1983) 1163. ^{14d)} M. J. Chet-Ross, D. Ross, Organometallics 2 (1983) 1163. ^{14d)} M. J. Chet-Ross, D. Ross, Organometallics 2 (1983) 1163. ^{14d)} M. J. Chet-Ross, D. Ross, Organometallics 2 (1983) 1163. ^{14d)} M. J. Chet-Ross, D. Ross, Organometallics 2 (1983) 1163. ^{14d)} M. J. Chet-Ross, D. Ross, Organometallics 2 (1983) 1163. ^{14d} M. J. Chet-Ross, D. Ross, Organometallics 2 (1983) 1163. ^{14d} M. J. Chet-Ross, D. Ross, Organometallics 2 (1983) 1163. ^{14d} M. J. Chet-Ross, D. Ross, Organometallics 2 (1983) 1163. ¹⁴⁰ M. J. Chet-Ross, D. Ross, Organometallics 2 (1983) 1163. ¹⁴⁰ M. J. Chet-Ross, D. Ross, Organometallics 2 (1983) 1163. ¹⁴⁰ M. J. Chet-Ross, D. Ross, Organometallics 2 (1983) 1163. ¹⁴⁰ M. J. Chet-Ross, D. Ross, Organometallics 2 (1983) 1163. ¹⁴⁰ M. J. Chet-Ross, D. Ross, Organometallics 2 (1983) 1163. ¹⁴⁰ M. J. Chet-Ross, D. Ross, Organometallics 2 (1983) 1163. ¹⁴⁰ M. J. Chet-Ross, D. Ross, Organometallics 2 (1983) 1163. ¹⁴⁰ M. J. Chet-Ross, D. Ross, Organometallics 2 (1983) 1163. ¹⁴⁰ M. J. Chet-Ross, D. Ross, Organometallics 2 (1983) 1163. ¹⁴⁰ M. J. Chet-Ross, D. Ross, D. cuti, M. H. Chisholm, K. Folting, D. A. Haitko, J. C. Huffman, J. Janos, J. Am. Chem. Soc. 105 (1983) 1163. - 1469 M. H. Chisholm, J. C. Huffman, R. J. Tatz, J. Am. Chem. Soc. 106 (1984) 5385. – ¹⁴⁰ M. H. Chisholm, D. M. Hoffman, J. C. Huffman, W.
- G. v. d. Sluys, S. Russo, J. Am. Chem. Soc. 106 (1984) 5386. ¹⁵⁾ Ru: L. M. Bullock, J. S. Field, R. J. Haines, E. Minshall, D. N. Smit, G. M. Sheldrick, J. Organomet. Chem. **310** (1986) C47.
- 16) Rh: N. J. Meanwell, A. J. Smith, P. M. Maitlis, J. Chem. Soc.,
- Dalton Trans. 1986, 1419. ¹⁷⁾ Sn: ^{17a)} Siehe Lit.⁴⁾. ^{17b)} Siehe Lit.^{10a)}. ^{17c)} S. W. Ng, C. Wei, V. G. K. Das, T. C. W. Mak, J. Organomet. Chem. 334 (1987) 283
- ¹⁸⁾ Hf: ^{18a)} Siehe Lit.^{4a)}. ^{18b)} Siehe Lit.^{4f)}.
- ¹⁹⁾ Ta: ^{19a)} R. R. Schrock, L. W. Messerle, C. D. Wood, L. J. Guggenberger, J. Am. Chem. Soc. 100 (1978) 3793. - 196) L. W. Mes-

B

serle, P. Jennische, R. R. Schrock, G. Stucky, J. Am. Chem. Soc. 102 (1980) 6744.

- ¹⁰² (1980) 6744.
 ²⁰⁾ W: ^{20a)} R. F. Forder, I. W. Jefferson, K. Prout, Acta Crystallogr., Ser. B, 31 (1975) 618. ^{20b)} Siehe Lit.^{14e)}. ^{20c)} Siehe Lit.^{14f)}. ^{20d)} M. F. Lappert, C. L. Raston, G. L. Rowbottom, B. W. Skelton, A. H. White, J. Chem. Soc., Dalton Trans. **1984**, 883. ^{20e)} M. H. Chisholm, B. W. Eichhorn, J. C. Huffman, J. Chem. Soc., Chem. Commun. **1985**, 861. ²⁰ⁿ L. M. Engelhardt, R. I. Descorregie C. L. Pactor, G. Salam, A. H. White J. Chem. Soc.
- ²¹⁾ Re: ^{21a)} E. O. Fischer, A. Frank, *Chem. Ber.* 111 (1978) 3740. –
 ²¹⁾ J. H. Merrifield, C. E. Strouse, J. A. Gladysz, *Organometallics*
- H. Herrinder, C. E. Strouse, J. H. Glacytz, Crysterent (1982) 1201.
 Pt: ^{22a)} A. J. Cheney, W. S. McDonald, K. O'Flynn, B. L. Shaw, B. L. Turtle, J. Chem. Soc., Chem. Commun. 1973, 128. ^{22b)} D. Schwarzenbach, A. Pinkerton, G. Chapuis, J. Wenger, R. Ros, R. Roulet, Inorg. Chim. Acta 25 (1977) 255. ^{22c)} A. T. Hutton, D. Schwarzendeh, P. J. Shaw, J. Chem. Soc. Chem. Commun. B. Shabanzadeh, B. L. Shaw, J. Chem. Soc., Chem. Commun. 1982, 1345.
- ²³⁾ Hg: R. D. Bach, A. T. Weibel, W. Schmonsees, M. D. Glick, J. Chem. Soc., Chem. Commun. 1974, 961.
- ²⁴⁾ Th: P. G. Edwards, R. A. Andersen, A. Zalkin, Organometallics
- ²⁵¹ U: ^{25a} G. Perego, M. Cesari, F. Farina, G. Lugli, *Acta Crystallogr., Ser. B*, **32** (1976) 3034. ^{25c)} Siehe Lit.²⁴. η²-Benzylmetall-Verbindungen:
- ²⁶⁾ Na: H. Schmidbaur, U. Deschler, B. Zimmer-Gasser, D. Neu-
- ²⁷⁾ Zr: ^{27a)} G. S. Girolami, G. Wilkinson, M. Thornton-Pett, M. B. Hursthouse, J. Chem. Soc., Dalton Trans. 1984, 2789. ^{27b} S. L. Latesky, A. K. McMullen, G. P. Niccolai, I. P. Rothwell, J. C. Huffman, Chem. Wilkinson, 2020. C. Huffman, *Organometallics* **4** (1985) 902. ²⁸⁾ U: Siehe Lit.²⁴⁾.
- η^3 -Benzylmetall-Verbindungen:
- ²⁹⁾ Fe: U. Behrens, E. Weiss, J. Organomet. Chem. 96 (1975) 399.
 ³⁰⁾ Co: J. R. Bleeke, R. R. Burch, C. L. Coulman, B. C. Schardt, Inorg. Chem. 20 (1981) 1316.
- ³¹⁾ Ni: E. Carmona, J. M. Martin, M. Daneque, M. L. Poveda, Organometallics 6 (1987) 1757.
- ³²⁾ Mo: F. A. Cotton, M. D. LaPrade, J. Am. Chem. Soc. 90 (1968) 5418.
- ³³⁾ Ru: U. Behrens, E. Weiss, J. Organomet. Chem. 96 (1975) 435.
- ³⁴⁾ Rh: R. R. Burch, E. L. Mutterties, V. W. Day, Organometallics 1 (1982) 188.
- 35) Pd, Pt: A. Sonoda, P. M. Bailey, P. M. Maitlis, J. Chem. Soc., Dalton Trans. 1979, 346.
- 36) Th, U. E. A. Mintz, K. G. Moloy, T. J. Marks, V. W. Day, J. Am. Chem. Soc. 104 (1982) 4692.
- ³⁷⁾ S. P. Patterman, I. L. Karle, G. D. Stucky, J. Am. Chem. Soc. 92 (1970) 1150.
- ³⁸⁾ W. N. Setzer, P. v. R. Schleyer, Adv. Organomet. Chem. 24 (1985) 353
- ³⁹⁾ D. Seebach, Angew. Chem. 100 (1988) 1685; Angew. Chem. Int. Ed. Engl. 27 (1988) 1624.
- ⁴⁰⁾ G. Boche, Angew. Chem. 101 (1989) 286; Angew. Chem. Int. Ed. Engl. 28 (1989) 277.
- ⁴¹⁾ In einem Brief vom 3. August 1988 schreibt Professor Stucky bezüglich der Position der H-Atome am benzylischen C-Atom: ", Your request concerns data that are no longer at hand for me to evaluate in detail, but my recollection is that the hydrogen atom positions were not sufficiently well determined to warrant comment in terms of bonding"
- 42) M. A. Beno, H. Hope, M. M. Olmstead, P. P. Power, Organometallics 4 (1985) 2117.
- ⁴³⁾ Wie immer bei Festkörperstrukturuntersuchungen kann über den Einfluß von Packungseffekten auf die Strukturvariation keine Aussage gemacht werden.
- 44) P. v. R. Schleyer, Pure Appl. Chem. 55 (1983) 335; 56 (1984) 151.
- ⁴⁵⁾ K. B. Lipkowitz, C. Uhegbu, A. M. Naylor, R. Vance, J. Comput. Chem. 6 (1985) 662.
- 46) G. Vanermen, S. Toppet, M. Van Beylen, P. Gierlings, J. Chem. Soc., Perkin Trans. 2, 1986, 699.
- ⁴⁷⁾ G. Vanermen, S. Toppet, M. Van Beylen, P. Gierlings, J. Chem. Soc., Perkin Trans. 2, **1986**, 707.
- ⁴⁸⁾ A. Sygula, P. W. Rabideau, J. Org. Chem. 52 (1987) 3521.
- ⁴⁹⁾ R. J. Bushby, M. P. Tytko, J. Organomet. Chem. 270 (1984) 265.
- ⁵⁰⁾ P. v. R. Schleyer, M. Bühl, U. Fleischer, N. v. E. Hommes, Vortrag beim DFG-Kolloquium im Schwerpunktprogramm "Reaktionskontrolle durch nicht-kovalente Wechselwirkungen. Quan-

tifizierung des Einflusses auf Struktur, Reaktivität und Selektivität", Marburg, 11. April 1989.

51) Im Zusammenhang mit den Strukturuntersuchungen an 1 und den Berechnungen zur Struktur von Benzyllithium-Verbindungen sei auf die Struktur hingewiesen, die an Pt-Flächen adsorbiertes "C₆H₅CH₂" aufweist; Es ist η^6 - und η^1 -gebunden und besitzt ein pyramidalisiertes benzylisches C-Atom:

N. R. Avery, J. Chem. Soc., Chem. Commun. 1988, 153. Eine analoge Struktur beobachtet man auch an einem Ru-Cluster, s. Lit.15)

- 52) Kopplungskonstante: M. D. Newton, J. M. Schulman, M. M. Manus, J. Am. Chem. Soc. 96 (1974) 17; Kopplungskonstante unter Berücksichtigung der Ladungsdichte: R. Lett, G. Chas-
- saing, A. Marquet, J. Organomet. Chem. 111 (1976) C17. ⁵³⁾ J. P. C. M. v. Dongen, H. W. D. v. Dijkman, M. J. A. de Bie, Recl. Trav. Chim. Pays-Bas 93 (1974) 29.
- 54) K. Takahashi, Y. Kondo, R. Asami, Org. Magnet. Reson. 6 (1974) 580
- 55) Auf Benzyllithium-Verbindungen, die am benzylischen C-Atom mono- bzw. disubstituiert sind, kann in dieser Arbeit nicht ausführlich eingegangen werden. Erwähnt seien die NMR-Unter-suchungen an 7-Phenylnorbornyllithium⁵⁶⁾, die zwar ein nichtplanares benzylisches C-Atom ergaben, doch weisen vergleichbare Amine aus Ringspannungsgründen ebenfalls eine hohe In-versionsbarriere auf⁵⁷⁾. Aus dem selben Grund ist auch bei 1-Phenylcyclopropyllithium-Verbindungen die Inversionsbarriere nicht unerwartet ⁵⁸⁾. Von den mit starken Akzeptoren substituierten Benzyllithium-Verbindungen ist lediglich das α-Methyl-α-(phenylsulfinyl)-benzyllithium nicht planar, und dies, obwohl Li[⊕] mit dem benzylischen C-Atom keine Bindung eingeht⁴⁰ Auch in 2-Lithio-2-phenyl-1,3-dithian ist das benzylische C-Atom stark pyramidalisiert⁵⁹⁾. Auf frühere Arbeiten über Trimethylsilyl-substituierte Benzyllithium-Verbindungen wird in einer Arbeit eingegangen werden, in der über die Kristallstrukturen von chiralem η^2 -C₆H₃CH(SiMe₃)Li TMEDA und η^1 -C₆H₅CH(SC₆H₅)Li 3 THF berichtet werden wird⁶⁰⁾. In beiden Verbindungen ist das benzylische C-Atom pyramidal.
- ⁵⁶⁾ P. R. Peoples, J. B. Grutzner, J. Am. Chem. Soc. 102 (1980) 4709.
- 57) S. F. Nelsen, J. I. Ippoliti, T. B. Frigo, P. A. Petillo, J. Am. Chem. Soc. 111 (1989) 1776.
- 58) D. Hoell, J. Lex, K. Müllen, J. Am. Chem. Soc. 108 (1986) 5983.
- 59) R. Amstutz, J. D. Dunitz, D. Seebach, Angew. Chem. 93 (1981) 487; Angew. Chem. Int. Ed. Engl. 20 (1981) 465; R. A. Laube, W B. Schweizer, D. Seebach, J. D. Dunitz, Helv. Chim. Acta 67 (1984) 224.
- 60) W. Zarges, M. Marsch, K. Harms, G. Boche, Publikation in Vorbereitung
- 61) R. West, R. Waack, J. Am. Chem. Soc. 89 (1967) 4395.
- ⁶¹⁷ R. West, R. Waack, J. Am. Chem. Soc. **89** (1967) 4395.
 ⁶²⁾ ^{62a} K. E. Hamlin, A. W. Weston, Org. React. **9** (1957) 1. ^{62b} D. J. Cram, A. Langemann, J. Allinger, K. R. Kopecky, J. Am. Chem. Soc. **81** (1959) 5740. ⁶²⁰ M. Calas, B. Calas, L. Giral, Bull. Soc. Chim. Fr. **1976**, 857. ^{62d} E. C. Alexander, T. Tom, Tetrahedron Lett. **1978**, 1741. ^{62e} L. A. Paquette, J. P. Gilday, C. S. Ra, J. Am. Chem. Soc. **109** (1987) 6858. ⁶²⁰ L. A. Paquette, J. P. Gilday, J. Org. Chem. **53** (1988) 4972. ^{62g} L. A. Paquette, C. S. Ra J. Org. Chem. **53** (1988) 4978. S. Ra, J. Org. Chem. 53 (1988) 4978.
- 63) M. J. S. Dewar, W. Thiel, J. Am. Chem. Soc. 99 (1977) 4899, 4907; Li-Parameter: T. Clark, P. v. R. Schleyer, W. Thiel, unveröffentlichte Ergebnisse.
- ⁶⁴⁾ W. Thiel, Quantum Chemistry Program Exchange Catalog, vol. 14, program 438, Indiana University, Bloomington 1982. ^{65) 65a)} R. Fletscher, M. J. D. Powell, *Comput. J.* 6 (1963) 163. –
- 65b) W. C. Davidon, Comput. J. 10 (1968) 406.
- ⁶⁶⁾ G. M. Sheldrick, SHELX-86, Program for Crystal Structure Solution, Göttingen 1986.
- ⁶⁷⁾ G. M. Sheldrick, SHELX-76, Program for Crystal Structure Determination, Cambridge 1976.

Kristallstruktur eines Benzyllithium THF TMEDA-Komplexes mit einem pyramidalen Benzyl-C-Atom

2309

- ⁶⁸⁾ N. Walker, D. Stuart, Acta Crystallogr., Ser. A, **39** (1983) 158.
 ⁶⁹⁾ E. Keller, SCHAKAL-86B, A FORTRAN Program for the Graphic Representation of Moleculare and Crystallographic Models, Freiburg 1986.
- ⁷⁰⁾ A. L. Spek, PLATON 88, Program for Geometrical Analysis of Crystal Structures, Utrecht 1988.
- ⁷¹⁾ Weitere Einzelheiten zur Kristallstrukturbestimmung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-54093, der Autorennamen und des vollständigen Zeitschriftenzitats angefordert werden.

[154/89]